Presentation Name🦧: Random perturbation of low-rank matrices
Presenter: 王可 助理教授
Date#️⃣👳‍♂️: 2021-08-25
Location👱: 腾讯会议 ID: 470 256 947
Abstract:
Computing the singular values and singular vectors of a large matrix is a basic task in high dimensional data analysis with many applications in computer science and statistics. In practice, however, data is often perturbed by noise. In this talk, we consider the matrix model Y=S+X where S is a low-rank deterministic matrix, representing the signal, and X is random noise. We investigate how much the singular value or singular vector of S is altered by a random perturbation. We show that better estimates can be achieved under this setting, improving classical perturbation bounds. We also give a precise description of the limiting distribution of the angles between the outlier singular vectors of Y with their counterparts, the leading singular vectors of S. It turns out that the limiting distribution depends on the structure of S and the distribution of X, and thus it is non-universal.
Annual Speech Directory🤵: No.215

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator👩‍🎨:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供:杏悦等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦