Presentation Name🐂: 系列报告之三: Boundedness of Riesz transforms on manifolds
Presenter: Prof. XuanThinh Duong
Date👩🏿‍🏭: 2016-12-30
Location: 光华东主楼1801
Abstract:

Let $M$ be a doubling Riemannian manifold. Assume that $/Delta$ is the Laplace-Beltrami operator on $M$.  We also assume that $/Delta$ generates a semigroup with Gaussian upper bound. Then the Riesz transform $T = /nabla /Delta^{-1/2}$ (where $/nabla$ is the Riemannian gradient) is bounded on $L^2(M)$ and its kernel is non-smooth so that $T$ does not belong to the class of Calder/'on-Zygmund operators. we will show that T$ is of weak type (1,1), hence bounded on $L^p(M)$ for $1 < p /le 2$.

海报

Annual Speech Directory👂🏽: No.295

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator⛔:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供:杏悦✌🏼、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦